Polarimetry at RHIC A. Bravar, I. Alekseev, G. Bunce, S. Dhawan, R. Gill, W. Haeberli, H. Huang, G. Igo, O. Jinnouchi, K. Kurita, A. Khodinov, Z. Li, Y. Makdisi, A. Nass, H. Okada, S. Rescia, N. Saito, H. Spinka, E. Stephenson, D. Svirida, D. Underwood, C. Whitten, T. Wise, J. Wood, A. Zelenski # Polarimetry: Impact on Spin Physics - measured spin asymmetries normalized by P_B to extract Physics Spin Observables - RHIC Spin Program requires $\Delta P_{beam} / P_{beam} < 0.05$ - normalization \Rightarrow scale uncertainty - polarimetric process with large σ and known A_N - pC elastic scattering in CNI region - A_N almost calculable, but small $\sim 1 4 \%$ - absolute "calibration": elastic *pp* scattering with polarized gas-jet target # Elastic $pC \rightarrow pC$ scattering at low t - 1. A_N from interference of spin non-flip and spin flip (helicity) amplitudes - ⇒ spin dependence of interaction - ⇒ hadronic spin flip (spin-coupling of Pomeron) - 2. Polarimetry - almost "calculable" - small $A_N \sim 1-4 \% \Rightarrow$ requires large statistics $> 10^7$ - large cross section - weak beam momentum dependence (p > 20 GeV/c) ? # A_N: from where does it come? $$\sigma = |A_{\text{hadronic}} + A_{\text{Coulomb}}|^2 \quad (|P + \gamma|^2)$$ around t ~ $$-10^{-3}$$ (GeV/c)² A_{hadronic} \approx A_{Coulomb} \Rightarrow INTERFERENCE CNI = Coulomb – Nuclear Interference unpolarized \Rightarrow clearly visible in the cross section d σ /dt (charge) polarized \Rightarrow left – right asymmetry A_N (magnetic moment) $$A_{N} = C \Phi_{em}^{flip} \Phi_{had}^{non-flip} + C_{2} \Phi_{had}^{non-flip} \Phi_{had}^{flip}$$ $$\propto (\mu - 1)_{p} \qquad \propto \sqrt{\sigma_{had}^{pp}}_{had}$$ QED \Rightarrow "calculable", expect $A_N \neq 0$ up to 4 - 5% $$A_N^{int} = \sigma_{tot} \times \frac{\alpha}{m_p \sqrt{-t}} \frac{\mu_p - 1}{2} \frac{1}{\sigma_{tot}^2 / 16\pi + 4\pi\alpha^2 / t^2}$$ hadronic non-flip EM spin flip QCD ⇒ "unpredictable", need direct measurement $$\frac{\mu_p - 1}{2} \to \frac{\mu_p - 1}{2} - I_5 + \frac{\mu_p - 1}{2}I_2$$ # Some A_N measurements in CNI region if used for polarimetry $\Rightarrow \Delta P/P \sim 15 - 20\%$ #### RHIC: the "Polarized" Collider 70% Polarization $L_{\text{max}} = 2 \times 10^{32} \text{ s}^{-1} \text{cm}^{-2}$ 50 < \sqrt{s} < 500 GeV # Elastic pTC Scattering Setup in the AGS Ring similar setups in RHIC for each beam 24 mm ## No More Beam Induced Pickups... NO BEAM CHARGE INDUCED SIGNAL!!! (Up to 2·10¹¹ p/bunch) - ➤ Top secret: every second line IS GROUND the whole way down to the very strip - ➤ No pileup in the preamp - ightharpoonup Lower limit in -t is only by the detector noise - \triangleright No upper limit on -t - \triangleright Can see real relativistic (fast) particles from the target – good T_0 definition (the rate is of the same order as carbons or higher) ### Performance - Very clean data - \triangleright Good separation of carbon from prompts may allow going to very high -t values - \triangleright Low χ^2 of sequential measurements stable operation # Si Detector and Energy Loss at $t \sim -0.01$ (GeV/c)², Energy of recoil Carbon E_{kin} \sim few 100 keV $(E_{kin} = -t/2M_C)$ range in Silicon, only fraction of micrometer substantial fraction of Carbon energy lost in dead layer (entrance window) correct E_{kin} for energy loss \rightarrow energy scale error important to minimize energy losses in dead layer of detector top view of Si strip eting Alessandro Bravar # DAQ and WFD Wave Form Digitizer = peak sensing ADC, CFD, ... deadtimless DAQ system \Rightarrow no spin dependent dead time! can accept, analyze, and store 1 event / each bunch ×-ing event rate: up to 10^5 ev/ch/sec # p\c raw asymmetry at 24.3 GeV $$P_{beam} = rac{1}{\left\langle A_N ight angle} \cdot oldsymbol{arepsilon}_N$$ $$\langle A_N \rangle = \frac{\sum N(t_i) A_N^{th}(t_i)}{\sum N(t_i)}$$ calculated over several t bins A_Nth from a fit to E950 data at 21.7 GeV over similar t range L. Trueman hep-ph/0305085 $$\langle A_{\mathbf{N}} \rangle \approx 1.12$$ $0.009 < |\mathbf{t}| < 0.022 \, (\text{GeV}/c)^2$ # AGS Polarization during acceleration (ramp) imperfection: $G\gamma = n$ RHiC & AGS Users' Meeting Alessandro Bravar # **AGS Polarization Systematics** no false asymmetries visible positive and negative beam polarizations give same asymmetries # Spin Dynamics Spin Precession in Laboratory Frame: (Thomas [1927], Bargmann, Michel, Telegdi [1959]) $$dS/dt = -(e/\gamma m) [(G\gamma + 1)B_{\perp} + (1+G) B_{o}] \times S$$ $G\gamma = 1.91 E$ Lorentz Force $$d\mathbf{v}/dt = -(e/\gamma m) [$$ \mathbf{B}_{\perp} For pure vertical field: Spin rotates Gy times faster than motion, $v_{sp} = Gy$ <u>Imperfection resonance</u> (magnet errors and misalignments, closed orbit errors, ...): $$G\gamma = v_{sp} = n$$ Intrinsic resonance (vertical focusing fields like in quadrupoles, finite beam emittance, ...): $$\mathbf{G}\gamma = \mathbf{v}_{\mathrm{sp}} = \mathbf{P}\mathbf{n} \pm \mathbf{v}_{\mathrm{y}}$$ # Imperfection Resonances: Gy = n partial snake (AGS) = imperfection resoance if snake sufficiently strong (5% enough in AGS) spin is fully flipped when crossing an imperfection resonance with no polarization loss for $G\gamma \neq n$, spin "oscillates" around stable direction, which is tilted from the vertical # Intrinsic Resonances: $G\gamma = nP + v$ betatron oscillation of frequency v if spin precession "in phase" with betatron oscillation $G\gamma = v$ when crossing the quadrupole depolarizing kicks δ add \Rightarrow depolarizing resonance condition to be in phase with betatron oscillation over a closed orbit spin must precess n + v times in a periodic accelerator spin "in phase" with betatron oscillation when crossing same quadrupole in consecutive FODO section if $$G\gamma = nP + v$$ Polarization losses reduced / avoided by forcing a full spin reversal (flip) using an RF dipole RHiC & AGS Users' Meeting # $A_{N} p \uparrow C \rightarrow p C$ at 3.9, 6.5, 9.7 & 21.7 GeV momentum transfer –t (GeV²/ c^2) only statistical errors are shown #### normalization errors: - $\sim 10 \%$ (at 3.9) - $\sim 15 \%$ (at 6.5) - $\sim 20 \%$ (at 21.7) #### systematic errors: - < 20 % - backgrounds - pileup - RF noise PPOOVURVEN # $A_N \not p \uparrow C \rightarrow p C$: Energy Dependence RHiC & AGS Users' Meeting Alessandro Bravar ### **RHIC Polarimeters** RHIC x 2 rings - Detectors are *15cm* away from target → slowest carbons can reach Si during one bunch crossing (106 nsec = 120 bunch mode) - 2 x 72 channels read out with WFD (increased acceptance by 2 x) - All Si strips parallel to the beam - Si at 45 degree : sensitive to vertical and radial components of asymmetry #### Polarization Measurements in RHIC - Polarization routinely measured at injection and flattop (by now several hundred measurements) - Detailed study of polarization behavior in RHIC - For normalization / P $_{beam}$ assume A_N (24.3 GeV) = A_N (100 GeV) (i.e. no energy dependence) - Polarization profile measurements - Several ramp measurements - Spin tune measurements ## The Absolute pp Polarimeter #### JET in the IR Polarized Hydrogen Gas Jet Target thickness of $> 10^{12} \,\mathrm{p/cm^2}$ polarization > 90% (~95%!) no depolarization from beam wake fields Silicon recoil spectrometer Measure A_N^{pp} in pp elastic scattering in the CNI region to $\Delta A_N < 10^{-3}$ accuracy Initially (2004) measure P_B to 10% # The Road to P_{beam} Requires several independent measurements - 0 target polarization P_{target} (Breit-Rabi polarimeter) - 1 A_N for elastic *pp* in CNI region: $A_N = 1 / P_{target} \varepsilon_N'$ - 2 $P_{beam} = 1 / A_N \epsilon_N''$ 1 & 2 can be combined in a single measurement: $P_{beam} / P_{target} = -\epsilon_N' / \epsilon_N''$ "self calibration" works for elastic scattering only - 3 CALIBRATION: A_N^{pC} for pC CNI polarimeter in detector kinematical range: $A_N^{pC} = 1 / P_{beam} \epsilon_N'''$ (1 +) 2 + 3 measured simultaneously with several insertions of carbon target - 4 BEAM POLARIZATION: $P_{beam} = 1 / A_N^{pC} \epsilon_N''''$ to experiments at each step pick-up some measurement errors: $$\frac{\Delta P_{beam}}{P_{beam}} = \left(\frac{\Delta P_{t\,arg\,et}}{P_{t\,arg\,et}}\right) \oplus \left(\frac{\Delta \varepsilon}{\varepsilon}\right)_{pp} \oplus \left(\frac{\Delta A_N}{A_N}\right)_{pC} \oplus \left(\frac{\Delta \varepsilon}{\varepsilon}\right)_{pC} \le 6\% \quad \text{expected} \quad \text{precision}$$ transfer calibration measurement # Principle $$t = (p_{out} - p_{in})^2 < 0$$ recoil proton $$A_{N}(t) = \frac{1}{P_{target}} \cdot \frac{d\sigma(\varphi + \pi)/d\varphi - d\sigma(\varphi)/d\varphi}{d\sigma(\varphi + \pi)/d\varphi + d\sigma(\varphi)/d\varphi}$$ $$P_{beam} = \frac{1}{A_N} \cdot \frac{N_{left} - N_{right}}{N_{left} + N_{right}}$$ $$A_N^{\text{beam}}(t) = -A_N^{\text{target}}(t)$$ for elastic scattering only! $$P_{Beam} = -P_{Target} \cdot \epsilon_N^{Beam} / \epsilon_N^{Target}$$ ### **Kinematics** $$|t| : 0.001 - 0.02 \text{ GeV}^2$$ $\vartheta_{\mathbf{R}}: 1-5 \text{ degrees}$ $T_{kin}: 0.5 - 10 \text{ MeV}$ $p_R : 30 - 140 \text{ MeV/c}$ tof: 100 - 20 nsec (@ 1m) essentially 1 free parameter: $t (+ \varphi) \Rightarrow$ elastic pp kinematics fully constrained by recoil proton only! $$\sin \theta_R \approx \left(1 + \frac{m_p}{p_{beam}}\right) \frac{\sqrt{|t|}}{2m_p}$$ $t = -2m_p T_{kin}$ measure position and energy of recoil \Rightarrow $\theta_R \& t$ $$tof \approx 1/\sqrt{2T_{kin}/m_p} \cdot D$$ \Rightarrow additional kinematical constraint $$\vartheta_R \& E_R \Rightarrow m_{\text{beam}} (M_X); \text{ tof } \& E_R \Rightarrow m_{\text{target}}$$ # Recoil spectrometer 6 Si detectors covering the blue beam => MEASURE energy (res. < 50 keV) time of flight (res. < 2 ns) scattering angle of recoil protons from pp -> pp elastic scattering HAVE "design" azimuthal coverage one Si layer only - ⇒ smaller energy range - ⇒ reduced bkg rejection power # Si Detector Design double sided readout (opt.) $72 \times 64 \text{ mm}^2$ thickness 500 microns p^+ side pitch 1 mm readout pitch 4 mm n^+ side pitch 4 mm $C \approx 20 \text{ pF} / \text{strip } (p^+ \text{ side})$ 80 pF / readout ch. energy loss in dead layer less critical for protons however same design as for pC detectors to minimize it # Jet-Target Holding Magnetic Field (1.0) Helmholtz coils almost no effect on recoil proton trajectories: left – right hit profiles & left – right acceptances almost equal (also under reversal of holding field) BROOKE # Gas JET Target Profile measured selecting elastic pp scattering events hor. pos. of JET 10000 cts. = 2.5 mm # Time of Flight vs. Energy recoil protons ## **Energy - Position correlations** RHiC & AGS Users' Meeting Alessandro Bravar # Missing Mass M_X² @ 100 GeV Alessandro Bravar BROOKHAVEN NATIONAL LABORATORY ### Statistics needed for \triangle P / P \sim 10 % For rate estimates we select pp elastic scattering events in $1 < E_{recoil} < 2 \text{ MeV}$ -> ~ ½ of useful x-section $$\wedge$$ ToF < 7.5 ns =>2 Hz rate for 40 x 10^{11} protons in RHIC $$\triangle P \sim 1/A_N \times \triangle \varepsilon_N \sim 30 \times \triangle \varepsilon_N$$ $$P_{beam} = 50 \% => \Delta P_{beam} = 5 \% => \Delta \epsilon_{N} = 0.0015 => 450 \text{ k ev}$$ $$P_{beam} = 30 \% => \Delta P_{beam} = 3 \% => \Delta \epsilon_{N} = 0.001 => 1,000 \text{ k ev}$$ $^{\mbox{NB}}$ once we have \mbox{P}_{beam} we have to measure / calibrate $\mbox{A}_{N}{}^{p\mbox{C}}$ for the carbon polarimeters #### Acquired statistics: - ~ 440,000 "events" @ 100 GeV (~ 2 x 10⁶ useful *pp* events) - $\sim 120,000$ "events" @ 24 GeV ($\sim 5 \times 10^5$ useful *pp* events) # **Summary** - polarimetry works reliably - fast measurements of P_{beam} in few min (AGS) / 30 sec (RHIC) - several hardware issues solved since last year (it is clear what needs to be improved...) - polarized gas jet target works beautifully (target, recoil spectrometer, ...) - Acquired enough statistics for a first measurement of P_{Beam} to at least 10% (@ 100 GeV)